dc dynamic and static pull-in predictions and analysis for electrostatically actuated clamped circular micro-plates based on a continuous model
نویسندگان
چکیده
This study develops a continuous model to analyze the ‘pull-in’ effect in the circular micro-plates used in capacitive-type micro-electro-mechanical systems (MEMS) sensors, actuators and microphones. In developing the model, the governing equation of motion of the deformed plate is established in the form of a partial different equation (PDE) which is then decomposed using the Galerkin method to create a coupled set of modal ordinary differential equations. By considering the first-order deflection mode only and using a fifth-order Taylor series expansion of the electrostatic force, closed-form solutions are obtained for both the position and the voltage of the static pull-in event. Applying an energy balance method and a finite-order approximation method, the solutions are then obtained for the position and voltage of the dynamic pull-in event. The theoretical results obtained for the pull-in phenomena are verified based on the comparison to available experimental data, and also numerically using a finite element analysis (FEA) approach. In general, the results indicate that the ratio of the dynamic to static pull-in voltages is approximately 92%. However, when the squeezed-film effect induced by the air gap between the two plates is taken into account, the value of this ratio increases slightly as a result of considering a higher dynamic pull-in voltage. (Some figures in this article are in colour only in the electronic version)
منابع مشابه
Dynamic and Static Pull-in instability of electrostatically actuated nano/micro membranes under the effects of Casimir force and squeezed film damping
In the current study, the effects of Casimir force and squeeze film damping on pull-in instability and dynamic behavior of electrostatically actuated nano and micro electromechanical systems are investigated separately. Linear elastic membrane theory is used to model the static and dynamic behavior of the system for strip, annular and disk geometries. Squeeze film damping is modeled using nonli...
متن کاملDynamic Characteristics and Vibrational Response of a Capacitive Micro-Phase Shifter
The objective of this paper is to control the phase shifting by applying a bias DC voltage and changing the mechanical characteristics in electrostatically-actuated micro-beams. This problem can be more useful in the design of micro-phase shifters, which has not generally been investigated their mechanical behavior. By presenting a mathematical modeling, Galerkin-based step by step linearizatio...
متن کاملOn the Stability of an Electrostatically-Actuated Functionally Graded Magneto-Electro-Elastic Micro-Beams Under Magneto-Electric Conditions
In this paper, the stability of a functionally graded magneto-electro-elastic (FG-MEE) micro-beam under actuation of electrostatic pressure is studied. For this purpose Euler-Bernoulli beam theory and constitutive relations for magneto-electro-elastic (MEE) materials have been used. We have supposed that material properties vary exponentially along the thickness direction of the micro-beam. Gov...
متن کاملA Numerical Improvement in Analyzing the Dynamic Characteristics of an Electrostatically Actuated Micro-beam in Fluid Loading with Free Boundary Approach
Electrostatically actuated microbeams have been studied by many researchers in the last few years. The aim of this study is to present an improved numerical analysis of the dynamic instability of a cantilever microbeam immersed in an incompressible viscous fluid. The finite element method is used for solving the vibrational equation of the microbeam and the potential functions of the fluids in ...
متن کاملApplication of Piezoelectric and Functionally Graded Materials in Designing Electrostatically Actuated Micro Switches
In this research, a functionally graded microbeam bonded with piezoelectric layers is analyzed under electric force. Static and dynamic instability due to the electric actuation is studied because of its importance in micro electro mechanical systems, especially in micro switches. In order to prevent pull-in instability, two piezoelectric layers are used as sensor and actuator. A current amplif...
متن کامل